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MODES WITH SWITCHINGS OF INCREASING FREQUENCY IN THE 
PROBLEM OF CONTROLLING A ROBOT* 

V.F. BORISOV and M.I. ZELIKIN 

Trajectories that are optimal with respect to high-speed response are 
constructed for a system for controlling a two-component manipulator (a 

robot). It is shown that when the initial conditions lie within a certain 

open region of the phase space, all optimal trajectories will have a 
segment of switchings of increasing frequency (SIF), i.e. a segment in 

which the control will undergo an infinite number of switchings in a 

finite time interval. 

The synthesis of the optimal control in the R* plane containing the 

mode of SIF was first constructed by Fuller /l/. It was shown in /2/ that 
the synthesis is structurally stable in the sense that adding terms of 

higher order of smallness to the integrand and to the right-hand sides 

of the system of differential constraints does not affect the qualitative 

pattern of the optimal synthesis in the neighbourhood of the origin of 

coordinates. 

The present paper explains that the synthesis in the problem of optimal 
control (relative to the high speed response) of the motion of the robot 

appears, in a certain sense, a direct product of the synthesis appearing 

in the Fuller problem and of the synthesis in the simplest problem of high- 
speed response t/3/, pp.38-47). The special aspect of the present paper 
consists of the proof of the proposition that switching surface is a 

piecewise-smooth manifold. The presence of the SIF mode is connected only 
with the fact that every trajectory intersects this surface an infinite 
number of times. In existing papers, the piecewise smoothness of the 
switching curve was proved for the two-dimensional problems using the SIF 
mode only for problems admitting of a one-parameter group of symmetries 

/l, 4-6/. A proof of the presence of SIF was given in /7, 0/. 

1. Formulation of the problem. The problem of controlling the robot can beformu- 
lated in two ways /9/. 

about its axis. 
A movable element is fixed on a massive vertical cylinder rotating 

In the first version the movable element has the form of a bar rotating in 
the vertical plane, and in the second version it takes the form of a horizontal advancing 
arrow. The system has two control parameters, the moment acting onthevertical cylinder, and 
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the force acting on the movable element. Both controls are constrained in module. 
The equations of motion for the first version have the form 

I 1' = x2. x2' = (u - x2x4 sin 2x,)/(1 + sin2 x3) 

x3 .Y x4. x4' = u + sin xQ + Cxz2 sin 2x, 

and for the second version we have 

(1.1) 

The controls u (.)* u (.) are measurable functions, and 

I 24, I -< Ug, I u 1 << 1 

The trajectories X (.) = (51(.),22(.),~3(.)15~(.)) are absolutely continuous. 
We shall consider the problem (Problem Al) 

(1.2) 

(1.3) 

T-t min. X (0) r X,, X (T) = 0 

where the trajectory X (t) satisfies system (1.2), (1.3). All results obtained remain valid 
also for the problem in which the trajectories X (6 satisfy system (l.l), (1.3). 

Definition. We shall callthetrajectory X(t) with control u(t), 1?(t) the mode of 
switching of increasing frequency (SIF), if the control has an infinite number of disconti- 
nuities in a finite time interval. 

Below we shall show that for any A,B: B<O, A >lizBZ 

& = {X lm= (I/lx4 I9 lx, II I 
with initial conditions X,,E 

x1 -A 1, [xp- B I)< E}, the optimal trajectories (OT) of Problem 

Al contain, for sufficiently small Et the segments of SIF. After a finite time interval 

depending on the initial conditions in a continuous manner, the OT with an infinite number 

of switching of the component of the control u and with constant u= -1, will emerge onto 

the singular manifold of the Problem Al represented by the surface n = {X /x3 =x4 = 0). After 
this, u will arrive, with u=o and a single switching, at the origin of coordinates. A 

one-parameter family of OT filling the two-dimensional surface z'a,A, smooth outside Zn,,, 1 

x , arrives at every point (a, p, O,O)E D,. The region D, decomposes into the layers Z,,,, 

over the base Jt. The points of switching the OT form a three-dimensional surface P (of class 

c' outside I' n n), dividing the region D, into two subregions D,+ and D,- in which u = 1 

and U= -1 respectively. 

2. Reduction of the problem. Let us consider the following system of equations: 

2 1' = 0X8, x2' = V, x; = x4 (2.1) 

x4' = U + z,%9/(1 + q”)” 

where the control o E [0, I], u, v, and conditions (1.3) all hold. Let us denote by Ma the 

set of absolutely continuous trajectories X(.), X(O)= X0 satisfying system (1.2) at O<. 

t<eR, and system (2.1) at t>ER. The constant R will be chosen later. 
Let us consider the following problem (Problem A2): 

T + inf, X (0) = X,, x (T) = 0, x (.)E ME 

By virtue of Filippov's theorem /lo/ Problems Al and A2 have solutions for any initial 

conditions. 

Note 1. The optimal time in Problem A2 does not exceed the optimal time in Problem Al. 

Therefore, if the OT of Problem A2 is found to be admissible in the Problem Al, then it will 

also represent the OT in Al. Below we shall show that Problem Al and A2 are indeed equivalent. 

All subsequent assertions will be valid when E< e, for a suffficiently small E0 = 

Eg (A, B) > 0, and we shall not discuss it in any detail. 

Lemma 1. Let X* be the OT in Problem A2 with initial conditions X,E&, and u*,u*,u* 

be the control on it. Then a* E 1 when t > ER; v* E -1 for O< t< eR. 

Proof. When t>ER, the motion in the z1,~2 plane does not depend on the behaviour of 

the coordinates =s. z,. When X,E D,, we can move the projection of the trajectory X (.) 
on the z9. I, plane to the origin of coordinates, in a time of the order of E. Therefore 

the optimal time T* is determined by the conditions z,(T*)= z,(T*) =O only. 

Let us write I~* (eR) = a, I%* (eR)= fl. Considering just the first two equations of system 

(2.1), we can show that .zz*(t)<< for any t, 0, a* 55 1 and 

T' = fl+ al/af'/,B*+ EH (2.2) 

Thus Problem A2 is reduced to that of minimizing the function (2.2) on the solutions Of 

system (1.21, (1.3) determined for O<t<ER. 

We shall show that if v*#--1 on the set of positive measure for O< t<&R, then the 
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trajectory X* will not be optimal. Let us consider the trajectory X0 of the system (1.2) 

with control uO= n*,v'= -1. We have 

z(t) = 
s' 
(1 + v*(T))& 20 (2.3) 

Y" z ;z**,z tg* /(l + (zS*)9* - (+$")a .2,"/(1 + (Is")*)' (2.4) 

(Y (1) = zQ* (t) - Q" (0, 2 (t) = .%* (k) - zF W) 

Let us integrate the terms on the right-hand side of (2.41, separating Y(t),z(f) as 

factors and denoting by a(X*,X"), b(X *,X0) the coefficients of Y (0, 2 (0. 

Y ” = ay + bz 

Taking into account the fact that Y (0) = 0, Y’ (0) = 0, we obtain 

Yf.)lIo,t]=K;'(Z(.)), X(t)= (~-~)~(l~~(~)~~ s 
0 

where we have introduced the operator 

Art: c (0, t1 --+ c [O, tl, 0 < t < eR 

(R+o) (t) = w (t) - f (t - T) a (T) co (1) d7 

II 

which has a bounded inverse. 
From this we find (C>O) that 

1 Y (t) 1 < CE u 2 (*) I&t1 = CEz (n 

Let us now obtain an estimate for 

(2.5) 

Separating in the integrand the terms containing Y(t),z(t), and taking into account (2.5) 
and the fact that fzSO(t)l<O(e), we obtain 

eR 
Axi >(i -O(e)) j z(t) df 

II 

Now from (2.2) and (2.3) we obtain the inequality T+(X" (.))<T*(X*(.)), which is impossible. 
From Lemma 1 and the identity 

satisfied on the solutions of the system fl' = x,/(l + rzZ), xp* = -i, it follows that Problem 
A2 is equivalent to the problem 

3. Mode of switchings at increasing frequency. Theorem 2. The solutions 
X* of Problem A2 with initial conditions -&ED,, have a segment of SIF. The trajectories 
X* emerge, after a finite time shorter than sR, and depending continuously on X0 onto the 
singular mode x*=x,= 0 with an infinite number of switchings of the control n. The optimal 
motion is completed by a segment of the singular trajectory with u = 0. 

Proof. 10, The upper bound of the optimal value of the functional in Problem AZ. when 
Ogt<;eR, we have, for any admissible trajectory of Problem A2, the inclusion .W) E DC,=. 
Therefore 

=ax 
=%.)EMR 

(.F,sr&l + zgV: 0 Q f < ER) < y. < C,e 
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Let 2' = (x3', x1') be the OT in the problem 

T- inf; 13' = 4, 14' = U, I u / .< UI = ug - y. 
li (0) = sio, xi (T) = 0, i == 3, 4 

(5301 

We shall consider the set K (r) = {z3, x4 1 1 z3 1 -I- (~u~)-~z,~.< r}. 
2~) E K (J& i = 1 + (2u,)-'. Let (zQO, X,J E K (r)? r< he*. 

Then, if X, E D,, then 

The time to 
at the point (0,O) has the upper bound C,1/;. Moreover, x"(t)= K(r) 

of arrival of s'(.) 

Let us 
denote by X0(.) the admissible trajectory in Problem AZ, 

for t f= 10, ?I, 

coincides with x0(.). 
whose projection on the space .rQ,x4 

Then 

inf I < (r2 j 0 (E)) (A + l:,R)-‘is 
xc )EMH 

5 (-z2’) dt < sr’:? (3.1) 

for certain s>o, it is possible to select a value independent of R. 

z". The lower bound of the optimal value of the functional in Problem ~2. 

!!, -7 (Is, ZJ I l -cQ l <: 
In the region 

l/g} \ K (r) the component x3' = xI of the phase velocity is separated from 

zero: I*;/> J/~~, therefore the time for which any admissible trajectory remains in the 

region R, is estimated as follows: 

Let X (.) be any trajectory admissible in Problem A2 and such, that ~~(0) = ‘i,rsgriz,(ll). 
Then 

Let X* be the OT of the Problem A2, X* (0)~ D,, (z8*,q*)(0)E K(r). Let us estimate the 

time T in which X* arrives at the region K(‘/,r), i.e. let us assume that 

K (l/*r) 

(z3*, x4*)(t) $ 

when TV [O,rl (t< CR). Let n be the number of intersections of the trajectory X* 
with the planes xg = li2r sgnx, at t E (0, ~1. We write p = {t E IO. T.] I I z,* (t) ( <r 'i2r). Y -zz LO, T]\ p. 

By virtue of (3.2) we have t> "::!(n - 1) I/r%, therefore 

By virtue of (3.1) we have 

(:4,.x) 

On the other hand we find, that 

j F*dl~%F*dt3rQ,r2mesv,,Q,r2T -Q.&/l (3.4) 

for some Qi> 0, independent of R. From (3.3) and (3.4) it follows that r<Ql/c 
Thus after a period not exceeding Q1/F, the value of r is halved, after the time of 

Ql;1/2P it halves again, and so on. It follows therefore that when r < he’ , then the time 

in which the OT X* with initial conditions X,ED, arrives at the plane x3 = .za = 0, has an 

upper bound in the form of the following sum of a geometric progression: 

Let us select R>Q*. Then T<ER and by virtue of Note 1 the OT in Problem A2 will 

be the OT in Problem Al. Thus we have shown that the OT X* of Problem Al arrives at the 

plane x in a time shorter than ER, which is continuously dependent on initial conditions 

X,E &. 

3O. Order of the singular OT's. We shall show that the OT of Problem Al with X, E D,, 



have segments of SIF. To do this it is sufficient to show that the OT of Problem Al, singular 
in it and belonging to &9 are of even order (see/U/ for the definition of the order of a 
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singular trajectory). 
Let us consider the system of equations of the Pontryagin maximum principle /12/ for 

Problem Al 

$1' = 0, $2' = -$,/(I + xgZ) - Zr,r,**?a!(l + r3")Z (3.5) 

q?$' = 24,x,x,/(1 + x32)2 - x22 (1 - 3x,2)Ip4/(1 + x3")3 

*: = -*s, x1' = xJ(1 + x32), Tz' = v* 

xg' = 9, x4' = u* + Sp~~,/(l + z3'y 

,7$X uqQ(t) =II* iq'i'r (t), 
u ,u0 

yg v*,(q = zJ* (t) &((f) 
1, 

Let us determine the trajectories singular in LI, lying in &. Let q*(d)= 0 on some 

segment (% 71). Then &(t) -0. Differentiating the identity & = 0 we obtain, by virtue 
of the system of Eqs.(3.5), 12z31#1 = 0. From Lemma 1 it follows that x,=# 0 in D,. If 

@'1 = 0, then 1/)* = con&# 0 and the optimal control U* will constantly violate Lemma 1. There- 
fore cP1fOl and we have xg :=z* = u * = 0. Differentiating the relations N, =% we find, 
by virtue of system (3.5), that at the segment of singular control 

a d”Xt 
=O, k=O,l,2,3; 

d dvf, 
-Kdt" du-z- =2J.& f 0 

Therefore, the orderofthe singular extremal is zero. The validity of the initial as- 
sertion now follows from the fact that the singular OT of even order cannot combine with the 
piecewise smooth non-singular OT if the control is discontinuous at the point of conjugation 
/ll/. This completes the proof of Theorem 1. 

4. Smoothness of the switching surface. Theorem 2. Problem A2 has a two-parameter 
set of families of extromals N,,p of the following type. For fixed values of cc,8 the 
trajectories of the family N,,ij pass through the point X a,R = ( a, f3,0,0)~ D, and contain the 
segment of SIF. The points of switching of the trajectories Na,~ form, for fixed Xa,~, 
a one-dimensional curve smooth outside x. The set P of points of switching for all trajec- 
tories Na,e with X,,, cz D, r is a three-dimensional surface smooth everywhere except, perhaps, 
at the points P n n. 

Proof. Let us put, for brevity, U* = 1. We shall seek a family lV=,fi of trajectories 
of system (3.5) passing throughthepoint 

Let us consider the mapping of the continuation d, of the surface C = {E = (Y, X)]\1;,= 

0) onto itself, forming together with the point &,6%x, the point &=@E,E~ of 

intersection of the trajectory E(t,&), 5 (0,&J = f, of system (3.5) with the surface x, at 
negative t smallest in modulo. We denote by o(gO) the negative root of the equation qd(z, 

Ea) =o smallest in modulo. 
We replace the variables 5 = (Y, X) by the variables A = @,, h,, x.9, &, h,, k,), using the 

formulas 

21 = a + u.h,h,, 5* = @ + ?&,a6 
53 = -ua,=a,, q = a,, % = -B - Ifa + 1i,/3a + uh,h,, 
$3 = &3h3, u = sgn h, 

(4.1) 

The above formulas specify one of the versions of determining the singularity of the 
mapping at: instead of the point I* = a, z, = #i, xg = 0, z4 = 0, & = --p - i;/a + l/zfp,$Q = O,$& = 
0 we insert the plane h, = 0. 

We shall seek a switching curve on the solutions of the family Na,s, starting from the 
fact that the curve must be an invariant curve of the mapping @. We rewrite Eq.(3.5) in the 
form of integral equations, and make the substitution (4.1). We shall seek a solution of the 
equation qa((z, go)= 0 in the form 7 = u&8. We shall agree to denote by 0, (8) the function 
A such, that ~tO~(~)~~~~*~~ 0 as e-c0 (where a is an arbitrary compact region of R" 
corresponding to De under the substitution (4.1)). Let A1 = 0((h). Then we obtain 

h,' = (1 + s) h, + 0, (e), X,’ = (-4 + 9 -I- ‘!$f x (‘Q) 
(1 + sp -I- 0, (e), J.,’ = - (h, + fls + uh, (bps - 
‘i,s2)) (1 + s)-l + 0, (e), I.,’ = (--I& + a) (1 + .Qvl + 
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01 (EL he1 = (h, -I- f3 (Zh,s - a2 - l/$) + 
6 C&b7 - @+, -I- &) aa - 7, (2 - h,)s3 + 
'/d)) (1 -t- V + 0, (E), h,' = - (h, + 3) (1 + S) -1 -j- 
0, (E) 

Me obtain the following equation for s = 3 (,I): 

0 = -47 -t- B (-43 + “/,s2 + ‘/,,sJ) -I- uh, (--h,h,s _t ‘i, (A2 + 

%) s2 + l/l, (h* - 2).93 - '/,*s") -1 0, (E) 
(4.3) 

Direct calculation confirms that the bound of the mappinq @ /A,+ has a unique fixed 
point A" = h'(a, p) with A,"> 0. 

Let Us fix c*, b: 1 a-- A I< 8, 1 P---B I<E. For any sufficiently small neighbourhood 
of the point A0, 

li, 

the constraints (3% lv,,nr,t~~.,>~t and a2 ILI,~ t~.,.,<oi (where QZ(A) = @ (@ (AH) 

are obviously continued to the diffeomorphism onto the whole neighbourhood U,. We shall denote 
these continuations by @+2 and @_'. We can directly confirm that they have a saddle point 
structure at the fixed point A"(& 6): the Jacobians D@**(A"(a, 0)) have each a single 
eigenvalue greater than unity with the eigenvectors cp+, 
than unity in module. 

andallremaining eigenvaluesare less 
According to the theorem on invariant manifolds for a difeomorphism 

/13/, the mapping dD has a one-dimensional unstable invariant manifold TaR, smooth outside 
the point h, = 0, and tangent to the eigenvectors (Do when h,> 0, and to cp_ when h, < 0. 
It can be shown that the set r L= [I Tv,fi is a three-dimensional manifold of the form h _ 

a.fi 

f (h,, a, Bi of class c' outside the plane I, = 0. 
Let us denote by ~VKO the family of trajectories of system (3.5) with initial conditions 

corresponding, according to the formulas (4.1), to the points of the manifold I‘. N,,,< has 
all the properties demanded in the formulation of the theorem, and this completes the proof 
of Theorem 2. 

Lemma 2. Let h* (k, a, p) be a component h, of the vector a-'(A), A = f&a, p). Then 

I ah*iah I c v,, 1 ah*/dCZ 1 = 0 (E), 1 ai*/f?f?~ 1 = 0 (E) 

we prove the lemma by differentiating the mapping (4.2)‘ 14.3) at the point p (a, Pf. - 

5. PrOOf Of the OptiUlality Of tk faTni.ly Of eXtreI3IalS. Theorem 3. Thetrajec- 
tories of the family N~,B are optimal in Problem Al. 

Proof. We shall use the notation of Theorem 2. We see that on the extremals constructed 

we have H i= fm$- 0. We shall show that the field of conjugated variables Y/H = (&lH, 
. * .) **w corresponding to Na+p is potential in the region D,. 

According to the theorem on the continuous dependence of the solutions of differential 
equations on the initial date, the function YIH is continuous in De. Let P be the surface 
of switching of the trajectories N,,p. We shall consider an arbitrary closed contour y"C 
P \ zt, and show that 

We denote by @* the mapping of the continuation @*: P+P, induced by the mapping @-I. 
According to the Poincar&Cartan theorem on integral invariant /L4/, we have 

Let us choose, as the system of coordinates on P, the values &* a, P). We have in these 

coordinates iD* (h,, a, fi) = (A* (h,, u, fi), a, 0). 
Let us write pr (%Xi a, 6) = (0, a, B). It is clear that it is sufficient to consider only 

those $ for which prya is a piecewise smooth curve. According to Lemma 2, yn-+pry' in 

the metric of C' as n-+w. The bound YfH II coincides with the corresponding field of 

conjugate variables in the simplest problem of high speed response in the n plane. We know 

that this field is potential, therefore the relation (5.1) holds. This, together with the 

fact that y/H is continuous, implies that Y/H is potential in 4. 
Let now X* be the OT in Problem Al, X*(O)E: D, and x0 be a trajectory of the family 

Nv,,B with X"(O) = X* (0). Consider the contour in D, U 2-f formed by these trajectories. 

Since YiH is potential, we have 
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From the Pontryagin maximum principle it follows that the right-hand side of this relation 

is equal to T", and the left-hand side does not exceed T*, where T”, T* is the time of 

motion along X” and X* respectively to the origin of coordinates. From this it follows that 

T’ < T*, i.e. X” is an OT. The theorem is proved. 
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